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We address the determination of physical observables in graphene in the presence of Coulomb interactions
of density-density type modeled with a static Coulomb potential within a quantum field theory perturbative
renormalization scheme. We discuss the similarities and differences of the model with quantum electrodynam-
ics and show that all the divergences encountered in the physical quantities are associated to the electron
self-energy and can be determined without ambiguities by a proper renormalization of the Fermi velocity and
the electron wave function. The renormalization of the photon polarization to second order in perturbation
theory—a quantity directly related to the optical conductivity—is given as an example. We also discuss the
determination of the effective many-body coupling constant in graphene.
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I. INTRODUCTION

The role of many-body corrections to the physics of
graphene is at this point uncertain. While in the first transport
experiments electron-electron interactions seemed not to
play a major role1–3 more recent measurements4–9 and the
observation of the fractional quantum-Hall effect10,11 indicate
the possible importance of the Coulomb interaction to the
intrinsic properties of graphene.

The problem of the nature of the interacting system was
addressed in detail in the early works on graphene both in the
weak12–15 and in the strong coupling limit.16–18 The main
issue was to determine the infrared nature of the system—its
Fermi-liquid character and its associated physical properties.
In the weak coupling regime12 with a perturbative
renormalization-group �RG� analysis it was shown that in-
trinsic graphene behaves as a strange Fermi liquid in the
sense that all possible interactions are marginally irrelevant
but the inverse electron lifetime grows linearly with the en-
ergy instead of quadratically.13 An upward renormalization
of the Fermi velocity at low energies was also predicted what
in turn implied a downward renormalization of the effective
Coulomb interaction �g= e2

4��v � to the infrared. Experimental
indications of both the linear inverse lifetime of the
electron4,7 and of the Fermi velocity dependence with the
energy9 have been recently reported. The results of these
early works have been reproduced and pushed forward under
several approaches after the synthesis of graphene.19–23

A very important aspect of renormalization was left aside
in these previous works: the renormalization of the param-
eters of the theory that allow to determine the physical ob-
servables. The physical reality of the cutoff in condensed-
matter models has given rise to some confusion in the
literature as to whether or not physical observables can de-
pend on the cutoff or on the regularization
procedure.21,22,24,25 We will here follow the standard quan-
tum field theory �QFT� approach to renormalization aiming
to give a prescription to calculate unambiguous, cut-off-
independent observable results to any order in perturbation
theory. We show that all the divergences arising at any order
in perturbation theory can be fixed by a proper renormaliza-
tion of the Fermi velocity and the electron wave-function

renormalization. Most of the observables depend exclusively
on the Fermi velocity whose value is fixed by an experimen-
tal data. We work out as an example the renormalization of
the photon self-energy, a quantity directly related to the Cou-
lomb interaction corrections to the optical properties of the
system. Although the procedure described in this work fol-
lows the standard work done in QFT,26 some subtleties ap-
pear due to the lack of Lorentz covariance and, in some
models, of causality which makes this work nontrivial also
under a QFT point of view.

II. RENORMALIZATION IN QUANTUM FIELD THEORY

Ultraviolet divergences arise in QFT due to the singular
behavior of the fields at very short distances in real
space—or at very large energies in Fourier space.
Renormalization26,27 is a prescription to get rid of ultraviolet
divergences and construct sensible models where physical
quantities can be accurately computed. In renormalizable
QFT, one can identify a set of “primitively divergent” Feyn-
man graphs at low order in perturbation theory whose struc-
ture coincides with terms existing in the original Lagrangian.
All the divergences at higher order can be identified as com-
ing from these previous ones �this will be clarified in what
follows�. Ultraviolet divergences can be canceled by adding
counter terms to the Lagrangian what amounts to a redefini-
tion of the parameters �mass, coupling constant, wave func-
tion� of the theory. The process is usually done order by
order in perturbation theory. If done appropriately at the end
one finds finite results independent of the regularization pro-
cedure in the computation of physical observables. The price
to pay in this process is the necessity to fix the values of the
renormalized parameters at a given energy from some well-
chosen experimental inputs. This “renormalization prescrip-
tion” is crucial in the process and the basis of the later RG
developments in QFT.

The determination of the experimental values of the pa-
rameters from a given experimental measure often involves
phenomenological assumptions. Very good examples of
these difficulties are provided by the interplay between the
accurate determination of the fine structure constant of
QED—that often is done from solid state measurements of
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the electron precession in magnetic fields—and its feedback
to determine the anomalous magnetic moment of the electron
with the actual precision of better than one part in a trillion.28

In the condensed-matter applications the difficulty in-
creases due to the fact that we do not have “scattering” ex-
periments involving the asymptotic states of the fields but
transport measurements that are influenced by all kinds of
extrinsic factors �disorder, doping, or substrate�. Yet the
renormalization program can be adapted to condensed-matter
systems that admit a continuum effective description,
graphene being one of the best examples. The independence
of the observable quantities on the cutoff guaranteed by the
procedure makes it irrelevant whether or not the cutoff has to
be taken to infinity or to a finite value defined at high ener-
gies as the inverse lattice spacing. It ensures that the observ-
ables of the effective low-energy theory do depend on the
high energy only through the renormalization of the effective
parameters and do not have an explicit dependence on high
energy quantities.

Next we will see these words at work in the concrete case
of graphene physics. The program consists of identifying the
primitively divergent Feynman graphs, adding counterterms
to subtract the divergences, redefine the parameters of the
model to absorb the infinities, and fix the finite parts of the
vertex correlation functions by a renormalization prescrip-
tion. For this last step we need a number of external condi-
tions �observable data�—the renormalization conditions—
equal to the number of parameters to be renormalized. The
original RG equations in the QFT approach were established
to demonstrate the independence of the observable quantities
on the renormalization prescription. Any two set of experi-
mental data will give rise to the same result for a cross sec-
tion.

III. RENORMALIZATION OF THE GRAPHENE MODEL

A. Definition of the model

A very early tight-binding analysis of the honeycomb
lattice29,30 revealed that the low-energy electronic excitations
of a graphene sheet are well described by the massless Dirac
Hamiltonian in two space dimensions. This special property
arises from the structure of the lattice with two atoms per
unit cell and from the very special property that the Fermi
level of the neutral system lays at the degenerate points
where conduction and valence bands cross. A continuum
model arises from the dispersion relation by linearizing the
bands around each of the Fermi points. In the clean neutral
system at low energies the density of states at the Fermi level
vanishes and the Coulomb interactions are unscreened.12 The
noninteracting model considering a single Fermi point is de-
scribed by the Hamiltonian �in units �=1�

H = vF� d2r�̄�r��i�i��r� , �1�

where i=1,2, �̄�r�=�+�r��0, and the gamma matrices can be
chosen as �x=�2 , �y =−�1 , �0=�3. �i are the Pauli matri-
ces and vF is the Fermi velocity �to be defined unambigu-
ously in the next section�. The limits of validity of the con-

tinuum model of graphene given by the Hamiltonian �1� are
twofold: the bending of the bands is neglected what imposes
a constraint on the energy E of the processes that can be
described: E�1–1.5 eV, and a single Fermi point is se-
lected what means that short range disorder or interactions
connecting the two Fermi points are neglected. Under these
assumptions it was shown in Ref. 31 that the Fermi point is
topologically protected and no gap will open from interac-
tions or disorder respecting the symmetries of the system.

The electron-electron interaction in graphene is described
by the Hamiltonian

Hint = e2� d2rd2r�
�+�r���r��+�r����r��

�r − r��
. �2�

It is immediately seen that, unlike what happens in the usual
two-dimensional electron gas, the ratio of the Coulomb in-
teractions and the kinetic energy in this system is a constant
independent of the density and given by g� e2

vF
often taken as

the graphene fine structure constant.
We will follow Ref. 14 and model the electron-electron

interaction as a density-density interaction mediated by a
scalar potential. The �instantaneous� Coulomb interaction
can be described by the scalar component of the gauge field

Hint = e� d2r�̄�r��0��r�A0�r� �3�

with our choice of gamma matrices.
In order to define the renormalized theory we need a La-

grangian, a renormalization scheme �i.e., a regularization
method and a set of renormalization conditions�, and the ex-
perimentally measured parameters associated with these con-
ditions.

The Lagrangian is

L =� d3k��̄��0k0 + v� · k�� − e�̄�0�A0 + A0�k�A0� �4�

and it contains four quantities that can be redefined: the ve-
locity v, the parameter e in the interaction, and the electron
and gauge field wave functions.

The Feynman rules for the given model are specified by
the electron and photon propagators Figs. 1�a� and 1�b� and
by the tree level interaction vertex �Fig. 1�c�� �0=−ie�0. The
electron and photon propagators in momentum space are
given by

(a) (b) (c)

FIG. 1. Tree level Feynman diagrams �see text for details�: �a�
electron propagator, �b� Photon propagator, and �c� Interaction
vertex.
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G0�k0,k� = i
�0k0 + v� · k

− �k0�2 + v2k2 , �5�

	0�k� =
1

2

1

�k�
. �6�

The standard Coulomb interaction in Eq. �2� can be recov-
ered from Eq. �4�.

The model was shown to be gauge invariant and renor-
malizable in Ref. 12. The renormalization functions can be
defined from the self-energy and the vertex as

G0
−1 − 
�k0,k� = Z�

−1/2�k0,k��k0�0 − Zv�k0,k�v� · k� , �7�

� = Zee�0. �8�

It is important to note that when renormalizing at a given
order in perturbation theory, the vertex functions �amputated
one particle irreducible Green’s functions� directly related to
the observable quantities have to be computed as a sum of all
the corrections and counterterms up to this order. It does not
make sense to renormalize a single diagram.

An RG analysis of the model �1� shows that four Fermi or
other local interactions are irrelevant while Coulomb inter-
actions modeled by coupling the electronic current J��x�
=�̄�x�����x� to a vector field A� with a �1 /r� propagator
are marginal.

B. Renormalization of the model. Graphene versus QED

In QED�3+1� there are three primitive divergent dia-
grams shown in Fig. 2 and three free parameters in the
model: the electron and photon wave functions, and the cou-
pling constant. The model is strictly renormalizable and
when computing a higher loop diagram we get higher powers
of the logarithmic divergence. The renormalization of the
fine structure constant QED= e2

4�c is due to the charge renor-
malization coming from the photon self-energy. The electron
wave-function renormalization �there is no velocity param-
eter there� gives rise to an anomalous dimension. As it is
known, the coupling constant �electric charge� renormalizes
to zero in the infrared and the theory is infrared free.
QED�2+1� is different. There, the coupling constant has a
positive dimension of mass ��M� and the theory is called
“superrenormalizable.” It means that it has less divergences
than its four-dimensional counterpart. In fact, there are no

ultraviolet infinities in QED�2+1�. The massless theory has
infrared divergences that can also be cured.32

The graphene model stands in between the two QED
cases due to the anomalous gauge propagator chosen. In
QFT a gauge field �in general, any vector field� has a kinetic
term with two derivatives and hence a 1 /k2 propagator in any
number of dimensions. When Fourier transformed it gives
rise to a 1 /r interaction in four dimensions and a logarithmic
interaction in planar models �2+1�. In the graphene model
the gauge field propagator has a �1 /k� dependence. The rea-
son is that, although the electrons are confined to the two
dimensional plane, the electromagnetic field lives in three
spatial dimensions. This makes the interaction term in the
Lagrangian scale invariant �critical point� what has interest-
ing consequences33,34 and in this respects it resembles
QED�4� rather than QED�3�. This is also what induces a
renormalization of the electron self-energy not present in
QED�3�. In what follows we will see that all the infinities of
the model are related to the electron self-energy which renor-
malizes the Fermi velocity at the one loop level and the wave
function at higher orders.

In the model defined by Eq. �4� the only primitively di-
vergent graph at the one loop level is the one corresponding
to the electron self-energy in Fig. 2�a� and of this, the diver-
gence only affects the spatial part of the momentum. The
result of the computation of the diagram with a hard cutoff is


�
�1��k� = −

g

4
v� · k	− log

k2

�2 + 4 log 2
 . �9�

The electron self-energy can be made finite at this order in
perturbation theory by including at tree level a counterterm
of the form depicted in Fig. 3 with the associated Feynman
rule


ct,�
�1� �k� =

g

4
v� · k�log �2 + 4 log 2 + F�� . �10�

As expected in a renormalizable theory, the counterterm has
the same operator dependence as a term in the original

(a) (b) (c)

FIG. 2. Primitively divergent Feynman graphs in QED�4�.

FIG. 3. Tree level counterterm associated to the electron self-
energy. See text for details.
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Lagrangian. Since the only requirement to impose on it is to
cancel the divergent part of the given diagram it contains a
momentum-independent arbitrary finite part F� to be fixed
by the renormalization condition, i.e., by an experimental
measure that allows to extract the value of the two point
function at a given momentum kR. This condition introduces
the scale that settles the apparent dimensional mismatch in
Eq. �10�. The calculation in a dimensional regularization
scheme follows exactly the same steps with an equivalent
finite arbitrary part in the counterterm F� instead of F�

which is eliminated by the renormalization condition. That
the procedure of renormalization does not depend on the
cutoff is obvious considering that there exists a renormaliza-
tion procedure �BPHZ scheme� that does not require the use
any cutoff.26

Notice that although being a tree level interaction, the
counterterm in Eq. �10� is of order g. This diagram has to be
added in the construction of the vertex functions at each
given order in perturbation theory. In particular, it will affect
the photon polarization at second order discussed in Sec.
III D.

Summing up the contributions of the tree level plus the
two Feynman graphs of order g �Figs. 2�a� and 3� the two-
point function is

G�
−1�k0,k� = − i	�0k0 + v� · k�1 −

g

4
�log k2 + F���


�11�

that can be written as

G�
−1�k0,k� = − i��0k0 + v�k�� · k� �12�

with

v�k� = v�1 −
g

4
�log k2 + F��� . �13�

The two-point function in Eq. �12� has the same form as the
free one with a k-dependent and arbitrary parameter v�k�.
The last step of the renormalization program is to fix the
arbitrariness with a renormalization condition. For this we
need an experimental measure of the Fermi velocity at a
given value of the momentum kR as it will be discussed in
the next section.

This finishes the renormalization of the theory to first or-
der in perturbation theory �one loop level�. Any observable
quantity at this level can be computed with the Feynman
diagrams of Figs. 1 and 3 and will be finite and independent
of the regularization procedure.

C. Determining the Fermi velocity and the coupling constant

The experimental determination of the Fermi velocity of
graphene35 is an important and elusive issue similar to the
determination of the fine structure constant in QED�3+1�
and we will discuss this further in the discussion section.
This is almost the only parameter in the theory and it enters
into practically all observable quantities. The fact that it can
vary as a function of the energy or even of the position on
the sample36 must be taken into account for the correct in-
terpretation of the experimental results.

As in the precision tests of QED, each comparison be-
tween theory and experiment can be seen as an independent
determination of vF. To exemplify how the renormalization
works we can take as an example the experimental value of
the Fermi velocity given in Ref. 37.

v�125 meV� = 1.093 � 106 m/s  vF. �14�

With this condition we fix the value of F� choosing the bare
velocity to be v=vF. The physical Fermi velocity will de-
pend on the energy at which it is measured and on the renor-
malization point kR �125 meV in this case� which becomes a
part of the defining theory:

vR�k� = vF�1 −
g

4
log	 k2

kR
2 
� . �15�

The definition of the running velocity defines the running
coupling constant

gR�k� =
e2

4�vR�k�
. �16�

Two different renormalization prescriptions for the Fermi ve-
locity measured at points kA, kB are related by the
renormalization-group equation

v�kA�
v�kB�

= 1 −
gB

4
log	kA

kB

 , �17�

where gB is the coupling at momentum kB. Hence, it is the
RG that ensures that the exact theory is independent of the
experimental point chosen in Eq. �14�. This in turn guaran-
tees the consistency of the renormalization procedure.

Another important issue which has been overlooked in
previous works concerns the determination of the effective
coupling constant of the many-body interactions in graphene.
This quantity is usually defined as a function of the Fermi
velocity as g= e2

4��vF
, where � is the dielectric constant of the

substrate. It is assumed that e is the bare charge of the elec-
trons. From the point of view of defining a sensible model to
compute observables the dielectric constant is an external
constraint that cannot be controlled. The parameter e never-
theless is a free parameter in the Lagrangian that is not renor-
malized. As such its precise value has to be determined with
yet another independent experiment and there are no a priori
reasons to assume the naked value. The expression �17� can
be used to find the precise value of e if the Fermi velocity
can be accurately measured at two different close energies
EA, EB near the Dirac point in the suspended very clean
samples recently available. Since at the suspended samples
�=1 we will have for, say, EB�2EA, e2

4� ��vA−vB�.

D. Photon propagator. Optical conductivity

As happens in QED�2+1�, the photon propagator de-
picted in Fig. 2�b� is finite at the one loop level. This one
loop result is independent on the nature of the interaction
since only electron propagators appear in the calculation.
Different interaction vertices describing Yukawa couplings,
scalar potentials, or disorder couplings may change the ten-
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sor structure but the diagram will remain finite. In QED�3
+1� this diagram has a logarithmic singularity and the pho-
ton polarization has higher powers of logs at higher orders in
perturbation theory what gives rise to the electric charge
renormalization. A related issue is that at this order in per-
turbation theory there are no Coulomb interaction corrections
to the optical conductivity of the system. As it is clear from
our analysis any correction appearing at higher orders in per-
turbation theory will originate in subdivergences related to
the primitively divergent graph of Fig. 2�a�. Vertex-type cor-
rections as the one depicted in Fig. 4�c� will be finite at all
orders in the present model. The full photon propagator at
order g2 will be given by the sum of the diagrams shown in
Fig. 4. Diagrams Figs. 4�a� and 4�c� are finite in this model.

The diagram in Fig. 4�b� contains a sub divergent diagram
which is identified as the first order correction to the electron
self-energy diagram discussed in the previous section. This
divergence is canceled by the diagram in Fig. 4�d� leaving a
finite, unambiguous, result.

The sum of diagrams 4�b� and 4�d� reads

	b + 	d = − e2� d3k

�2��3�0G�k�

��
ct
�1� − ie2� d3p

�2��3�0G

��k + p��0 1

�p��G�k��0G�k + q� , �18�

where 
ct
�1� is given by Eq. �10�. We can identify the piece in

the brackets as the renormalized electron self-energy with
both contributions from the diagram in Fig. 2�a� and its
counterterm shown in Fig. 3. Hence the inner loop has al-
ready been computed and the potentially divergent part that
remains is

	b + 	d �
e4

32�vF
� d3k

�2��3Tr

�0��0k0 + vF� · k�� · k��0k0 + vF� · k��0��0�k0 + q0� + vF� · �k + q��log
k2

kR
2

�− k0
2 + vF

2k2�2�− �k0 + q0�2 + vF
2�k + q�2�

. �19�

We have computed explicitly this contribution in both di-
mensional regularization and a hard cutoff and it is finite and
independent on the regularization procedure. Thus, the renor-
malization procedure for the photon propagator is complete
to second order in perturbation theory by means of the renor-
malization condition that made the electron propagator finite
to first order in perturbation theory.

Most of the electromagnetic response properties of the
system are given by the photon propagator. The complex
dielectric function ��� ,q� is defined as

1

��q,��
= 1 + V0�q�	�q,�� . �20�

In the limit �→0 it gives the static screening properties of
the system and is purely real. In undoped graphene no finite
screening length is generated and the effective Coulomb po-
tential remains long ranged. The conductivity can also be
obtained as

���� = lim
q→0

i�

q2 	�q,�� . �21�

The optical conductivity can be computed from Eq. �21�. The
zeroth-order dynamical conductivity comes from the one-
loop diagram in Fig. 4�a� which gives the well known ex-
pression

�0��� =
�

2

e2

h
�22�

independent of the energy. The Coulomb interaction correc-
tions to the optical conductivity can be obtained from the
photon propagator at second order in perturbation theory dis-
cussed above. Since we have not computed the finite parts of
the diagrams involved we cannot give a precise number but
from this discussion it is clear that the result does not depend
on the regularization prescription and it only depends on the
chosen experimental data fixing the Fermi velocity.

In the particular case of the real part of the conductivity to
two loops order,22,24,25 the inclusion of counterterms does not
produce any change in the computation, other than the fact
that the renormalized coupling constant must be used. But
the use of a renormalized theory will be essential to ensure
cut-off independence in the computation of the imaginary
part, the q-dependent dielectric function, or higher orders in
the real part.

IV. CONCLUSIONS AND DISCUSSION

In this work we have addressed the determination of
physical observables in graphene in the presence of Coulomb
interactions of density-density type modeled with a static

a) b) c) d)

FIG. 4. Feynman diagrams contributing to the photon self-
energy to second order in perturbation theory.
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Coulomb potential within a QFT perturbative renormaliza-
tion scheme. We have shown that all the divergences up to
two loops of the physical quantities are associated to the one
loop electron self-energy and can be regulated by a proper
renormalization of the Fermi velocity. The consistency of the
scheme presented was exemplified by the renormalization of
the photon polarization at the two loops level. We have
shown that the Coulomb interaction corrections to the optical
conductivity are fixed unambiguously with a proper renor-
malization of the Fermi velocity and do not depend on the
regularization scheme.

The QFT renormalization procedure outlined in this work
shows that it can also be applied to condensed-matter theo-
ries where there is an ultraviolet physical cutoff �the inverse
of the lattice spacing ��1 /a� that prevents the appearance
of infinities. Although initially devised to get rid of ultravio-
let divergences, the QFT renormalization in more modern
approaches is a way to define the physical parameters of
effective theories in a given range of energies that do not
depend on the details or parameters at higher energies.

As we have seen the most important parameter in the
computation of the observable quantities in graphene is the
renormalized Fermi velocity that defines the Coulomb cou-
pling constant. In the model discussed in this work the Fermi
velocity grows without bound in the infrared.12 This sets a
lower bound on the validity of the model that breaks down
when the Fermi velocity approaches the speed of light c. The
scale defines an infrared cutoff � for the theory and can be
computed as

� = kR exp�−
16��c − v�kR��

e2 � . �23�

This estimate depends on the renormalization point kR and on
v�kR�. Plugging in the measured values we realize that the
huge exponential suppression gives an infrared cutoff below
any experimental resolution. This does not impose any real
bound on the validity of the model from an experimental
point of view. The limits of validity of the static model are
set by internal consistency of the theory: the choice of a
charge-charge interaction made to model Coulomb interac-
tions is consistent with the static approximation since both
are related to the ratio of Fermi velocity over the speed of
light. When the Fermi velocity increases it would be more
consistent to consider a retarded Coulomb interaction and a
full interaction vertex. The retarded model was analyzed up
to one loop in Ref. 12 and has been revised recently in Ref.
38.

For the renormalization procedure to be complete, the fine
structure constant of graphene g= e2

4��vF
must be fixed, being

an important quantity that appears in all the electronic prop-
erties of the system. A precise experimental determination is
a necessity as the experiments in graphene are reaching a
high degree of accuracy. The program to fix this constant can
be similar to the one followed in the case of the electromag-
netic fine structure constant.28 In the case of graphene the
theoretical determination is much simpler since there are no
mass parameters relations involved in the calculations.
Moreover it is very interesting the additional fact that the
quantity determining G �Fermi velocity� is by itself an ob-
servable related to the one particle properties of the system.
We expect that a proper combination of photoemission5,39

optical8 and transport7,40 measures with the corresponding
calculations in the renormalization scheme described here
should be enough to determine g as precisely as needed both
theoretically and experimentally as it happens in QED
�3+1�. As discussed in this work, an independent experimen-
tal measurement is needed also to fix the value of e, a free
parameter in the Lagrangian.

The renormalization program described in this work can
be carried out to all orders in perturbation theory. As de-
scribed in Refs. 12 and 14, the electron self-energy at the two
loops level has a logarithmic singularity that induces a wave-
function renormalization. A new counterterm of order g2 has
to be added that affects the photon polarization function at
the three loops level. This counterterm can be fixed by the
same renormalization condition used to fix the Fermi veloc-
ity: requiring that the two point function at the two loops
order has the same form as the free one, with a finite residue
at kR given by a second experimental input. In the present
model all physical quantities are fixed by renormalizing the
electron propagator only. It is worth noticing that with the
instantaneous Coulomb interaction discussed in this work,
the wave-function renormalization does not give rise to an
anomalous exponent and the residue of the quasiparticle in
the random phase approximation done in Ref. 14 is finite at
the Fermi surface implying that, despite the anomalous
lifetime13 the system is closer to a Fermi liquid than to a
marginal Fermi liquid.41
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